Accuracy First: Selecting a DP Level for Accurate ERM

BIRS 2018, NIPS 2017, TPDP 2017

Seth V. Neel

May 3, 2018
Seth Neel, Bo Waggoner, Katrina Ligett, Steven Wu, Aaron Roth
Motivation

- After over a decade of intense study, DP is beginning to see large scale deployments by companies like Apple and Google.

ERM is the core task in machine learning

Privacy is a priority, but absent regulation, accuracy is likely the first order concern

Natural question: *Subject to a given accuracy level, what is the best privacy level one can obtain?*
From theory to practice

Theorem (Generic ML privacy theorem)

When run with privacy level ϵ, Alg achieves accuracy α.

Engineer at Data Corp:

How should I choose ϵ?

What if accuracy is critical to the system?
From theory to practice

Theorem (Generic ML privacy theorem)

When run with privacy level ϵ, Alg achieves accuracy α.

e.g., $\alpha = \frac{10000}{\epsilon}$.
From theory to practice

Theorem (Generic ML privacy theorem)

*When run with privacy level ϵ, Alg achieves accuracy α. *

e.g., $\alpha = \frac{10000}{\epsilon}$.

e.g., $\alpha = O \left(\frac{1}{\epsilon} \right)$.
Theorem (Generic ML privacy theorem)

When run with privacy level ϵ, Alg achieves accuracy α.

e.g., $\alpha = \frac{10000}{\epsilon}$.

e.g., $\alpha = O\left(\frac{1}{\epsilon}\right)$.

Engineer at Data Corp: How should I choose ϵ?
From theory to practice

Theorem (Generic ML privacy theorem)

When run with privacy level ϵ, Alg achieves accuracy α.

e.g., $\alpha = \frac{10000}{\epsilon}$.

e.g., $\alpha = O\left(\frac{1}{\epsilon}\right)$.

Engineer at Data Corp: How should I choose ϵ?

What if accuracy is critical to the system?
This work

Question
Given an accuracy requirement, can we run a learning algorithm as privately as possible?

Setting: empirical risk minimization.

Given data and a loss function, find an “accurate” hypothesis.

1 Accuracy First: Selecting a Differential Privacy Level for Accuracy-Constrained ERM. Joint with Katrina Ligett, Seth Neel, Aaron Roth, and Z. Steven Wu. NIPS, 2017.
Private Accurate ERM

- Empirical risk function:

\[
L(\theta, D) = \frac{1}{n} \sum_{i=1}^{n} \ell(\theta, (X_i, y_i)) + \frac{\lambda}{2} ||\theta||_2^2
\]

- Let \(\theta^* = \text{argmin}_{\theta \in C} L(\theta, D) \)

- Given accuracy tolerance \(\alpha \), find the most private \(\theta_{\text{priv}} \):

\[
L(\theta_{\text{priv}}, D) \leq L(\theta^*, D) + \alpha
\]
Private ERM

- Accuracy guarantees: ϵ privacy $\implies f(\epsilon)$ accuracy

- Given accuracy α solve for $\epsilon = f^{-1}(\alpha)$

How to go beyond worst-case analysis?
Naive Search: Doubling...

- For $t \in [T]$ generate ϵ_t-private hypothesis θ_t

- Check privately if $L(\theta_t, D) \leq L(\theta^*, D) + \alpha$
 - if yes: stop, output $(\theta_1, \ldots, \theta_t)$
 - if no: double ϵ_t

- Final ex-post privacy loss is:
 (cost publishing $\{\theta_i\}_{i=1}^t$) + (cost checking accuracy $\{\theta_i\}_{i=1}^t$)

How to formalize the privacy guarantee?
Road Map

- Formalizes a notion of *ex-post* privacy: privacy loss is data-dependent

- Gives an ex-post analysis of the AboveThreshold algorithm with private queries

- Application to two private ERM algorithms

- Use of *gradual release* technique [Koufogiannis 2017] improves upon doubling method
All outputs are private but some outputs of an algorithm may be more private than others. In Math:

Definition (ex-post privacy loss)

\[
\text{Loss}(o) = \max_{D, D': D \sim D'} \log \frac{P[A(D) = o]}{P[A(D') = o]}.
\]
We say that A satisfies $E(o)$-ex-post differential privacy if for all $o \in O$, $\text{Loss}(o) \leq E(o)$.

- Related to the notion of privacy odometers [Rogers, Roth, Ullman, Vadhan 2016]
- Ex-post differential privacy has the same semantics as differential privacy, once the output of the mechanism is known: it bounds the log-likelihood ratio of the dataset being D vs. D', which controls how an adversary with an arbitrary prior on the two cases can update her posterior.
Our Approach

To privately evaluate the error of each θ^t use AboveThreshold (Trick: Ex-post AboveThreshold)

Generate $\{\theta_i\}^t_{i=1}$ such that publishing any prefix $(\theta^1, \ldots, \theta^k)$ released incurs only privacy loss ϵ_k (Trick: Noise Reduction)
Our framework: example

1. Compute "true" output non-privately
2. Use random walks to add noise to each coordinate
3. If not accurate enough, "rewind" the walks!
4. Use InteractiveAboveThreshold to check accuracy
Our framework: example

1. Compute “true” output non-privately

True (non-private) θ

\[
\begin{pmatrix}
1.0 \\
4.0 \\
\vdots \\
2.0
\end{pmatrix}
\]
Our framework: example

1. Compute “true” output non-privately
2. Use random walks to add noise to each coordinate

True (non-private) \(\theta \)

\[
\begin{pmatrix}
1.0 \\
4.0 \\
\ldots \\
2.0
\end{pmatrix}
\]
Our framework: example

1. Compute “true” output non-privately
2. Use random walks to add noise to each coordinate
Our framework: example

1. Compute “true” output non-privately
2. Use random walks to add noise to each coordinate
Our framework: example

1. Compute “true” output non-privately
2. Use random walks to add noise to each coordinate
3. If not accurate enough, “rewind” the walks!

use InteractiveAboveThreshold *to check accuracy*
Our framework: example

1. Compute “true” output non-privately
2. Use random walks to add noise to each coordinate
3. If not accurate enough, “rewind” the walks!

use InteractiveAboveThreshold to check accuracy

True (non-private) θ

```
1.0
4.0
...
2.0
```

Random walk noise

![Random walk noise chart]

Private output θ'

```
1.35
4.29
...
1.53
```
Our framework: example

1. Compute “true” output non-privately
2. Use random walks to add noise to each coordinate
3. If not accurate enough, “rewind” the walks!

use InteractiveAboveThreshold to check accuracy
We want to publish the most private query $\theta_t \in \{\theta_i\}_{i=1}^T$ whose accuracy is above the threshold α

Standard priv analysis: publish all the private queries and run AboveThreshold

Intuitively, we want to generate and publish queries one at a time until the algorithm halts

Pay only for the queries we publish: requires an \textit{ex-post} analysis

\[\textbf{Algorithm 2} \text{ InteractiveAboveThreshold: IAT}(D, \varepsilon, W, \Delta, M)\]

\begin{align*}
\textbf{Input:} & \text{ Dataset } D, \text{ privacy loss } \varepsilon, \text{ threshold } W, \ell_1 \text{ sensitivity } \Delta, \text{ algorithm } M \\
\text{Let } \hat{W} = W + \text{Lap}\left(\frac{2\Delta}{\varepsilon}\right) & \\
\text{for each query } t = 1, \ldots, T \text{ do} & \\
\quad \text{Query } f_t \leftarrow M(D)_t & \\
\quad \text{if } f_t(D) + \text{Lap}\left(\frac{4\Delta}{\varepsilon}\right) \geq \hat{W}: \text{ then Output } (t, f_t); \text{ Halt.} & \\
\text{Output } (T, \bot). &
\end{align*}
Ex-post Above Threshold II

Suppose that the prefix \(\{f_1, \ldots, f_t\} \) is \(\epsilon_t \)-differentially private. Then ex-post AT is \((\epsilon + \epsilon_t) \)-ex-post differentially private.

Proof.

\[
\begin{align*}
\Pr[\text{IAT}(D) = t, f_1, \ldots, f_t] & \leq \Pr[\text{IAT}(D) = t | f_1, \ldots, f_t] \Pr[M(D) = f_1, \ldots, f_t] \\
& \leq e^{\epsilon \Lambda} \cdot e^{\epsilon_t} = e^{\epsilon \Lambda + \epsilon_t},
\end{align*}
\]

- \(\epsilon_0 \approx O\left(\frac{\log(T/\gamma)}{\alpha n}\right) \); \(\epsilon_t \) data-dependent - can be much smaller!
Intuition for privacy improvement

The **noisier** estimates reveal no private information conditioned on the **least noisy** one!

True (non-private) θ

\[
\begin{pmatrix}
? \\
? \\
\ldots \\
? \\
\end{pmatrix}
\]

Random walk noise

\[
\text{Private output } \theta'
\]

\[
\begin{pmatrix}
1.73 \\
4.26 \\
\ldots \\
1.41 \\
\end{pmatrix}
\]
The noisier estimates reveal no private information conditioned on the least noisy one!
Intuition for privacy improvement

The **noisier** estimates reveal no private information conditioned on the **least noisy** one!

True (non-private) θ

\[
\begin{array}{c}
? \\
? \\
\ldots \\
? \\
\end{array}
\]

Random walk noise

Private output θ'

\[
\begin{array}{c}
1.09 \\
4.28 \\
\ldots \\
1.81 \\
\end{array}
\]
Instead of generating private hypothesis \(\{\theta_t\} \) independently via the Laplace Mechanism, use correlated noise technique.

Each \(\theta_t \) is a post-processing of every \(\theta_s, s < t \).

Publishing the prefix \(\{\theta_1, \ldots, \theta_t\} \) incurs only loss \(\epsilon_t \) instead of \(\sum_{s=1}^{t} \epsilon_s \), by post-processing.

Gradual Private Release via Random Walk with Laplace Marginals
High-level paradigm

known algorithms for differentially-private learning

example above: output perturbation

InteractiveAboveThreshold (accuracy checks) and **NoiseReduction** (random-walk) techniques

learning algorithms that are “as private as possible”
Experiments: vs using theorems

Logistic regression.
Classify network activity in KDDCup99 dataset, n = 100k.
Experiments: vs using theorems

Logistic regression. Classify network activity in KDDCup99 dataset, \(n = 100k \).
Experiments: vs using theorems (2)

Linear (ridge) regression. Predict $\log(\text{retweets})$ on Twitter dataset, $n = 100k$.

![Comparison to theory approach graph]

- CovarPert theory
- OutputPert theory
- NoiseReduction
Experiments: vs using Doubling

Comparison to Doubling

- Doubling
- NoiseReduction

Input α (excess error guarantee)

ex-post privacy loss ϵ
Privacy Odometers and Filters: Pay-as-you-Go Composition

Private Empirical Risk Minimization

Privacy-Preserving Logistic Regression

Gradual Release of sensitive data under differential privacy.

Is interaction necessary for distributed private learning?